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An asymmetric double cantilever beam (ADCB) is a simple but effective specimen for the 
measurement of polymer/polymer and polymer/non-polymer bimaterial interface fracture 
toughness. In order to characterize fully the bimaterial interface strength, and to control the crack 
trajectory, the critical energy release rate, Go, and the phase angle, 4, of the applied stress field as 
functions of loading and geometry of the specimen should be obtained. For most practical cases, 

has to be evaluated numerically. In this work, a boundary element analysis is carried out to 
obtain G and ~ for the ADCB specimen at different material and geometry combinations. An 
expression for the energy release rate, G, based on Kanninen's beam on elastic foundation model 
is compared with the numerical results. Limitations on the use of the ADCB specimen are also 
discussed. 

1. In troduct ion  
Strong interface adhesion and a controlled morpho- 
logy are important issues for phase-separated blends 
of immiscible homopolymers. It is well known that 
addition of block copolymers to these blends can 
cause remarkable improvement in their mechanical 
properties [1, 2], particularly in their fracture tough- 
ness characteristics, and, accordingly, block 
copolymers have been widely used as compatibilizers 
for these polymer blend systems. The improvement 
results from the fact that block copolymer chains form 
interface junctions through which stress can be trans- 
ferred [3-6] resulting in a substantial reinforcement of 
the interfaces themselves. 

Interface adhesion can be quantified using the con- 
cept of interface fracture toughness [7-10]. Common 
tests for measuring polymer/polymer adhesion have 
problems that are both intrinsic to the types of mater- 
ials being measured and difficult to circumvent. 
Engineering tests such as the peel and blister test are 
often sensitive to the global inelastic deformations 
which occur in the polymer away from the crack tip. 
Standard fracture mechanics tests such as the single- 
edge notch test are often limited in their applicability, 
as the introduction of bimaterial interfaces often re- 
suits in cohesive failure of one of the substrate mater- 
ials as cracks tend to deflect into the more compliant 
substrate. While microscopic approaches, such as 
those using surface force measurement apparatus, can 
provide information about the molecular affinity be- 
tween polymer and substrate, they may not allow the 
development of the local interfacial crack tip inelastic 
deformation mechanisms Such as crazing, which have 

significant effects on the magnitude of the interracial 
fracture toughness. 

Cracks in homogeneous brittle materials grow in an 
opening mode and the fracture toughness, Gc, is rela- 
tively independent of the mixity of the applied loading, 
which can be considered as a measure of the shear and 
normal traction experienced near the crack tip [11, 
12]. On the other hand, the fracture toughness of 
a bimaterial interface depends not only on the 6nergy 
release rate but also on the phase angle which 
measures the relative amount of shear and tensile 
loading experienced by material points directly ahead 
of the interface crack [13-16]. Recently, many tests 
have been successfully designed to measure the inter- 
face fracture toughness of bimaterial systems. For 
example, Charalambides et al. [16] have developed 
a four-point bending specimen with interface cracks to 
investigate the interface fracture tougness of 
A1/poly(methylmethacrylate) (PMMA). O'Dowd et al. 

[17], have developed asymmetric and symmetric bend 
specimens to investigate the interface fracture tough- 
ness of the alumina/niobium system. Liechti and Chai 
used biaxial loading experiments to investigate the 
glass/epoxy interface [18]. Based on the work of 
Brown [19], we have found that an effective test 
method for the fracture toughness of a polymer/poly- 
mer interface is the asymmetric double cantilever 
beam specimen (ADCB) shown in Fig. 1. ADCB speci- 
mens are easy to fabricate and they cover a reasonable 
range of phase angles so that the trajectory of the 
crack can be controlled, causing it to grow along the 
interface. ADCB specimens have been used success- 
fully in recent experiments to measure the interface 
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Figure 1 Schematic figure of the ADCB specimen. A, razor blade thickness; a, the crack length; L, the uncracked ligament length; hx and h2, 
the thicknesses of the two beams. 

fracture toughness of bimaterial systems such as poly- 
styrene/poly (2 vinylpyridine) (PS/PVP) and PS/glass 
[5, 6]. 

The development of a test specimen for measuring 
interface fracture toughness involves finding analyti- 
cal and numerical solutions for the energy release rate 
and determining the stress intensity factors and the 
phase angles. In this work we focus on the determina- 
tion of these loading parameters, using the PS/PVP as 
an illustrative case. The experimental results and de- 

t a i l s  using the ADCB specimen such as specimen 
preparation, testing procedure, and data analysis (ion 
beam analysis, transmission electron microscopy, etc.) 
can be  found elsewhere [5, 6, 20-23]. 

2. M e c h a n i c s -  mixed mode  f rac ture  
The near-tip stress field of a stationary crack lying 
along a planar bimaterial interface between two lin- 
early elastic, isotropic and homogeneous materials 
can be uniquely characterized by the complex stress 
intensity factor [7] 

K = K1 + iK2 (1) 

where i = ( - 1) 1/2 ; K is a function of the specimen 
geometry, the applied load and material properties. 
K1 and K2 have the dimension of [stress] 
[length] 1/2-z' where e is a real number related to the 
material properties by 

= (1/2re)tn[(~;i/gl + 1/g2)/(Kz/l, t2 + 1/p-l)] (2) 

where ~:i = 3 - 4  w for plane strain and ~q = 
( 3 -  vi)/(l + vi) for plane stress, vi and gi denote 
Poisson's ratio and the shear modulus of Materials 1 
and 2, respectively. The parameter a is very small for 
most bimaterial systems. For  example, for PS/PVP 
system, with PS in the upper beam and PVP in the 
lower beam as shown in Fig. 1, the Young's modulus 
for PS is E~ = Ees = 3 GPa, and Poisson's ratio 
vl = Vps = 0.341; for PVP, E2 = Epvp = 3,5 GPa,  and 
v2 =Vpvp = 0.325, e = 2.8 x 10 -3 for the system. 

The traction directly ahead of the crack tip is given 
by 

(%y + ioxy)0=o = K r  -1/2+i~ (3) 

where r and 0 are a polar coordinate system with 
origin at the crack tip as shown in Fig. 2. The crack 
opening displacement components at a small distance 
r behind the crack tip are given by 

Av  + iAu = Auy + iAux 

= (uy + iu=)e=~ -- (uy + iUx)o=-~t 

= C K r  1/2+i~ [2 (27l:) 1/2 (1 + 2ie) cosh(rte)] 
(4) 

where C is a material constant defined by 
C = (~1 + 1)/~tx + (~2 + 1)/~t2. Av and Au at r = D 
are shown schematically in Fig, 2. 

Equation 3 implies that the near-tip stress oscillates 
very rapidly due to the term r i~ = c o s [ ~ l n ( r ) ]  
+ isin [a In (r)] as one approaches the crack tip r = 0. 

For the same reason, Equation 4 shows that there is 
a region near the crack tip where material interpenet- 
ration occurs. However, for most material systems and 
loading combinations encountered in the polymer 
ADCB specimen testing, this near-tip contact zone is 
smaller than any meaningful physical scale and can be 
ignored [71. The ratio of the shear traction to the 
normal traction directly ahead of the crack tip at 
x = d is given by 

( O ' x y / O ' y y ) r = d ,  0 = 0  = tan qt 

= Im [ K d ; " ] / R e  [ K d  '~] (5) 

where Re and Im denote the real and imaginary part 
of a complex number and ~ is defined as the phase 
angle of K d  ~. It is important to note that unless ~ = 0, 
the phase angle, 4, depends on d and hence a unique 
value of phase angle (usually referred to as mixity if 
such a unique value exists) cannot be defined. If ~ = 0, 
K1 and K2 become the classical stress intensity factors 
K~, K ,  which strictly measure the normal and shear 
stress singularity. A particular case where ~ = 0 is 
when the material is homogeneous. 

In a homogeneous material, ~) > 0 implies that the 
crack has a tendency to Propagate into the material 
below the interface, follow the direction perpendicular 
to that of the maximum "hoop" stress; whereas if 

< 0, the crack has a tendency to be deflected into 
the material above the interface [11]. For  bimaterial 
systems, the phase angle, q/, varies slowly along the 
interface. In general, the direction of crack deflection 
depends on the phase angle as well as the details of the 
failure and deformation mechanisms of the interface 
and those of the bulk materials above and below the 
interface. However, ~ can often be used as a guide to 
predict roughly the crack propagation direction. In 
experiments, it is often convenient to measure the 
energy release rate, G, which is related to the complex 
stress intensity factor, K, by 

G = C 1K12/[t6 cosh 2 (I"CE)] (6a) 

o r  

FK[ = ( G/C)  1/2 4cosh (~c) (6b) 

where [ J denote the absolute value of a complex 
number. Because G is a real number, it alone cannot 
characterize fully the crack-tip field. In order to specify 
K, which has two real components, the phase angle, 4, 
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Figure 2 Schematic figure showing the coordinate system at the 
crack tip. B0 and B~ denote points on opposite sides of crack face 
before loading. B and B' denote points on opposite sides of crack 
face after loading. Av, the opening displacement; Au, the shearing 
displacement at a distance D behind the crack tip. 

corresponding to a fixed d is needed. Using this defini- 
tion, a point in the (G, 4) plane is uniquely related to 
a point in the (K1, K2) plane. It should be noted that 
the choice of d is arbitrary [10]. From physical consid- 
erations, it is often chosen to be comparable with the 
size of the plastic zone ahead of the crack which is 
typically the smallest macroscopic length scale in the 
physical problem. To compare experimental interface 
fracture toughness results, one should use the phase 
angle, 4, corresponding to the same d for a given 
material combination. The phase angles, ~t, corres- 
ponding to two different choices of d, i.e. dl and d 2 a r e  

related by 

* (d l )  -- qt (d2) = eIn Ida/d2] (7) 

Because typically e is very small (as in the PS/PVP 
system), and In is a "weak" function of its argument, 
the phase angle usually does not change significantly if 
different values of d are used [7]. 

Following the concept of "failure locus" introduced 
by Rice [7], for a given phase angle, ~ (associated with 
the chosen d), the applied G reaches a critical value, 
Gc (~), which is a material constant and is defined as 
interface fracture toughness. Because Gc depends on 4, 
the fracture toughness is a curve in the (G, 4) plane. 

3. ADCB specimen description 
The ADCB specimen is shown schematically in Fig. 1. 
Two slabs of different thicknesses are bonded to form 
an ADCB. One example of the application of the test 
is conducted with the PS/PVP polymer pair. A razor 
blade of known thickness, A, is driven at a very slow 
constant rate forcing an interface crack to grow, the 
length of which may be measured by means of a video 
camera and monitor. One advantage of this test is that 
at least 20 values of fracture toughness could be ob- 
tained from each specimen to calculate the mean value 
of G, and hence increase the accuracy of the test. 

The thicknesses of the two beams are ha and h2, the 
distance from the loading point to the crack tip is a, 
the length of the uncracked ligament of the specimen is 
L. The thickness of the inserted razor blade is A. El,  
E 2 and va, v2 are the Young's moduli and 
Poisson's ratios of the upper and lower beam. 
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Note that from dimensional analysis, the solution of 
the bimaterial problem depends on the dimensionless 
parameters E1/E2, vl, v2, h2/hl, ht/a and L/a. For 
example, from linearity and dimension considerations, 
the complex K for the ADCB specimen has the form 

K = E 1 8 a - Z h 3 / 2 - i a F ( E 1 / E 2 ,  va ,  V2, 

h2/hl, ha/a, L/a)  (8) 
where 6 = 5v + i~u is the prescribed displacement vec- 
tor at the loading point. In our ADCB case 6 = A, the 
razor blade thickness. The complex function, F, is 
a dimensionless function of its dimensionless argu- 
ments. F can be obtained using Eqtmtions 5 and 6b 
once G and the phase angle, 4, are determined numer- 
ically. 

3.1. A p p r o x i m a t e  e x p r e s s i o n s  for G 
The energy release rate, G, can be estimated by treat- 
ing the ADCB as two separate elastic cantilever beams 
and finding the derivative of the strain energy stored 
in the beams with respect to the crack length, a. The 
resulting expression for G is 

3A2Ea E2hah~ 
G = 8ag(Elha 1 + E2h3 ) (9) 

Equation 9 is a good approximation for cracks with 
lengths much longer than the beam thickness. Because 
most polymer glasses have low elastic moduli com- 
pared with metals, the crack length, a, needed for 
crack growth along suffic{ently strong interfaces for 
a given thickness of the razor blade may not be large 
enough for the simple beam theory to be accurate. In 
other words, the simple beam model is too stiff to 
capture the actual energy release rate, G, for short 
cracks. A possibly more accurate estimate was given 
by Creton et al. [5], which was obtained based on 
Kanninen's beam on elastic foundation model [24]. 

3A2 EaE2h3h 3 2 3 2 3 (C1E2h2 + C2Elhl)  
G = 8 a4A 2 (10) 

where A 3 3 3 3 = C1E2h2 + C2Elh~ and Ca = 1 + 0.64hi/ 
a, C2 = 1 + 0.64h2/a. Indeed, experimental fracture 
toughness data obtained by Creton [5] have been 
found to correlate considerably better when Equa- 
tion 10 is used for the determination of energy release 
rate. 

It should be noted that Equations 9 and 10 both 
implicitly assume that the length of the uncracked 
ligament of the beam, L, is large compared with the 
crack length, a, and hi/a < 1, so that crack growth 
proceeds in an approximate steady state manner. This 
assumption allows us to calculate the mean fracture 
toughness from the 20 or so data points obtained from 
the test. 

4. Numerical results for G and d/ 
A boundary element method is developed to calculate 
G and qt for the ADCB specimens for different values 
of hi~ha, El~E2, va, v2 and hl/a. Details of this 
method are given in the Appendix. We did not include 



L/a in this parameter study because our numerical 
results showed that G and ~ do not change sig- 
nificantly as long as L/a > .1, a condition that is satis- 
fied by most ADCB specimens. Also, to limit the 
number of parameters in this numerical study, we 
assumed that Vl = v 2  =0.3,  which is close to 
Poisson's ratio for most materials. 

In the following, the approximate expression for the 
energy release rate from Equation 10, GK and the 
energy release rate obtained from the BEM result, 
G~E~ will be normalized by Gb . . . .  which is the energy 
release rate from the simple beam theory given by 
Equation 9; these normalized energy release rates are 
denoted by G* and * G~u ,  respectively. 

We first compared the validity of the approximate 
formula for the energy release rate given by Equa- 
tions 9 and 10 with the BEM results. These results are 
shown in Fig. 3a-c. Because Gbeam is the normaliz- 
ation factor, the top horizontal lines G* = 1 in these 
figures are the normalized energy release rate pre- 
dicted by simple beam theory. Two thickness combina- 
tions are used in these figures, namely, h2 = h~ and 
h2 = 10hi. The solid line represents G* for h2 = h~, 
and the dashed line represents the G* for h 2 = 10h~. 

Fig. 3a shows G* for E1 = Ez. The G * ~  and G* are 
in close agreement in the short-crack range, i.e. from 
2 < a/h~ _< 6. This figure clearly shows that the energy 
release rate given by simple beam theo ry  overesti- 
mates the energy release rate, particularly in the short- 
crack range. As the crack length increases, G * ~  and 
G* approach * Gbeam which is 1, with G*~u lying inter- 
mediate between G* and * Gbear n. Thus, G~ is a good 
approximation for G ~ u  over nearly all the practical 
range of a/h~ and ht/h2. It should be noted that the 
difference between G * ~  and G* is approximately in- 
dependent of the ratio of the beam thicknesses. 

Although the differences between the normalized 
energy release rate, G*~M and G*, are larger for  long 
cracks than those for the short cracks, as can be seen 
from Fig. 3a, the differences between energy release 
rate GBn~ and GK for long cracks are actually very 
small because the normalization factor, G b . . . .  is small 
for large crack length. For  example, in the specimens 
we used for the PS/PVP system, the energy release 
rate G~ ~ 1.2 j m - 2  and G ~  ~ 1.1 j m - 2  for 
a/h~ = 6 (where h~ = 1.6 mm). Therefore, the absolute 
value of the differences between G ~  and GK for long 
cracks are negligible. 

Fig. 3b shows G* for E1 = 5Ez. As in the case of 
E~ = E2 ,  GK and G~M are in close agreement if 
h2 = h~. However, for large ratio of beam thicknesses, 
e.g. h2 = 10ht, GK and G , ~  differ significantly from 
each other for short cracks. Even in these cases, G* is 
still a much better approximation to G * ~  than * Gbeam, 
which is 1. As before, this curve shows that the simple 
beam theory is not a good approximation for short 
cracks, especially when the differences of beam thick- 
nesses and the elastic moduli are large. 

Fig. 3c shows the results for G* for E1 = 25 E2. 
G* and G*~M are in reasonable agreement for different 
values of a/h1 only if h~/h2 is close to unity. For  
a short crack along a symmetric double cantilever 
beam interface, e.g. a = 2h1, h~ = hx, Gbeam ~ 2.5 GBEM; 
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Figure 3 Comparison of G* * * be,m, GBEM, and GK, for three different 
material pairs. G*bo,m = 1. G K.*" ( - - )  for h 2 = hi, ( - - . - )  for 
h 2 = 10h I . G*EM: (O) for h 2 = hi,  (Q)) for h2 = 10hi. (a) E 1 = E2, (b) 
E 1 = 5E 2, and (c) E1 = 25E2. 

for ADCB (hz=lOhl) short crack ( a = 2 h l ) ,  
Gbeam ,~ 20 GBEM. 

From Fig. 3 one can see that for short cracks, i.e. 
a/h1 < 6, there are substantial differences between 
Gbeam and GBEu; however, GK and GB~M in this range 
are still in good agreement as long as there is no 
substantial difference in elastic moduli across the 
interface. Even if El/E 2 >> 1, Kanninen's approxima- 
tion Equation 10 is still reasonably accurate as long as 
0.5 < hz/h x < 2. This result implies that GK can be 
used to determine interface fracture toughness for 
most bimaterial systems composed of polymer glasses. 

The BEM numerical results of normalized energy 
release rate, G* and phase angle, Ca, of the ADCB 
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Figures 4-12 Numerical results of energy release rate, G*, and 
phase angle, qt~. for different geometry combinations. The thickness 
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specimen for nine different material combinations,  i.e. 
E1/E2 = 25, 10, 5, 2, 1, 0.5, 0.2, 0.1 and 0.04, are 
computed and given in Figs 4-12.  Each figure con- 
tains the results for one material pair at six thickness 
c o m b i n a t i o n s  hz/'h 1 = l ,  2 ,  4 ,  6, 8, 1 0 .  T h e  n u m e r i c a l  

results of G* and ~d are given in the sub-figures (a) and 
(b), respectively. The horizontal axis is the normalized 
crack length, a/hl, while the vertical axis is the nor- 
malized energy release rate, G* (Figs 4a-12a)  or the 
phase angle, qt d (Figs 4b-12b). 

The phase angle, ~d == tan-  1 Jim K*/Re  K*],  is de- 
termined at x = d, where K* = K d  ~ and d is of the 
order of the plastic zone size and is chosen to be 
100 lam in this work. This value of d is of the order of 
the largest craze zone size observed in experiments .  
This choice will be justified in the discussion. 

The G*E~ and ~a results for the six thickness combi- 
nations (hz/hl = 1, 2, 4, 6, 8, 10) are represented by the 
six different lines in both G* and ~d figures in Figs 
4a, b-12a,  b. 

Numerical results for E1 = 25E2 are shown in 
Fig. 4 for the case of severe material mismatch where 
the upper beam is practically rigid compared with the 
lower beam. Obviously, the simple beam model  
should not be used. As the crack length increases, the 
BEM result approaches that given by the simple 
beam model for geometrically symmetric samples 
(h 2 = h i )  , while GB~M is still much less than Gbeam for 
geometrically highly asymmetric specimens. For these 
specimens, the G* curves collapse into one, i.e. the 
normalized energy release rate, G*, is approximately 
independent of ha/hi ratio for h2 _> 6hl. 

The phase angles, ~d, for the case of  E1 = 25E2 are 
g iven  in Fig. 4b. For hz _< 4h~, ~ta ~ 0, which means 
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Figure 8(a,b) E1 = Ez. 

the stress state at r = d, 0 = 0 has a tendency to drive 
the crack into the lower beam (the lower modulus 
material), q/d decreases as the aspect ratio h2/hl and 
the crack length increase and is negative for h2 _> 6hl 
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Figure 10(a,b) E1 = E2/5. 

and a > 4hl. For long cracks (a > 6hl), the phase  
angle does not change significantly for each geometry. 
The maximum phase angle is about  35 ~ and the min- 
imum is about  - 8 ~ 
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Figure 12(a,b) E1 = E2/25. 

Fig. 5 gives the numerical results for El = 10E2. 
The general trend for the energy release rate diagram 
is similar to that of the E1 = 25E2 case. The G* curves 
collapse into one when h 2 >_ 4h~. The phase angle, ~d, 
is only positive when h 2 _< 2hl. The phase angle is 
negative for higher aspect ratios. Similar trends are 
observed in Fig. 6 for E1 = 5E2. 

In Fig. 7, E~ = 2E2, the normalized energy release 
rate curves for h2 > 2hl overlap each other and the 
Gbe,m/GBEM ratio reduces to 5 for short severe asym- 
metric specimen. For long cracks, i.e. a > 5hl, the 
phase angles remain constants for different thickness 
ratios. 

Fig. 8 provides the G and ~d curves for the special 
case of EI = E2. The six G* curves are practically 
independent of the thickness ratio. The phase angle ~d 
is independent of the choice of d and it represents the 
real shear/tensile mode mixity in this case. The phase 
angle, ~d, is also close to constant if a/hl > 4, the case 
of a relatively long crack. 

In Figs 9-12, E2 > EI, the material in the lower 
beam is stiffer than that of the upper beam. For  these 
cases, the normalized energy release rate, G*, is prac- 
tically independent of the beam thickness ratio that we 
have selected, i.e. h2 > hi. Furthermore, for these 
thickness ratios, the energy release rate GBEM is better 
approximated by Gbeam for the case of long cracks 
than for the cases where E2 < Ex. For short cracks, 
however, there is still a substantial difference between 

GaEM and Gbeam. 
Figs 9b-12b provide phase angle information for 

material pairs with E2/E1 = 2, 5, 10 and 25. The lower 
beam is stiffer and its thickness is equal to or 
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bigger than that of the upper beam, so the phase 
angles are always negative for these specimens. From 
Figs 9b-12b, the region of a/hl ,  where the phase 
angle remains constant, decreases with increasing ma- 
terial property mismatch and aspect ratio. For  sam- 
ples with h 2 >_ 6hl, there is no significant change in 
phase angle with further increases in geometric asym- 
metry. The most negative angle, qtd, we obtained in the 
calculation is about - 38 ~ with E2 = 25E1, hE > 6hl 
and h < a. The range of phase angle possible for the 
ADCB specimens is thus estimated to be ( - 38~176 

5. D i s c u s s i o n  
5.1.  C h a r a c t e r i s t i c  l e n g t h ,  d 
To be consistent with the small-scale yielding assump- 
tion, the distance, d, used to compute the phase angle 
is chosen to be larger than the length of a typical craze 
zone ahead of the interface crack but smaller than the 
typical specimen dimensions. (Our specimen dimen- 
sions are in the millimetre range.) 

The d value should be larger than the craze zone 
length, so the material there is in linear elastic state. 
For  the bimaterial PS/PVP system, the material prop- 
erty mismatch is small, so that the craze zone length, 
Lc, ahead of the interface crack can be estimated using 
the Dugdale model of a crack lying in a homogeneous 
material loaded under mode I conditions [25, 26] 

Lc ,,~ n E G / [ 8 ( 1  - v2)cyo 2] (11) 

where G is the energy release rate, E and v are the 
Young's modulus and Poisson's ratio of PS, and 
~0 is the crazing stress of PS. The crazing stress for PS 



(about 55 MPa) is lower than that for PVP (about 
75 MPa) under our testing conditions [5]. Using 
Eps = 3 GPa and G = 100,Jm -2, which is approxi- 
mately the highest fracture toughness encountered for 
the PS/PVP system, the estimated craze zone length 
given by Equation 11 is about 40 gm. The Choice of 
d = 100 p,m is based on these considerations. 

5.2. Limitation of the ADCB specimen 
A related issue is the maximum toughness value that 
can be measured by the ADCB specimen. The max- 
imum toughness is limited by beam failure occurring 
behind the crack tip caused by existing flaws or mas- 
sive crazing on the beam surface, The normal stress, 
cyx=, due to the K field on the crack surface at dis- 
tance > 10 ~tm behind the crack tip is found to be very 
small compared to the stress given by the beam theory 
if the absolute value of the phase angle is less than 30 ~ . 
Therefore, an upper bound for Cr=x behind the crack 
tip can be estimated using beam theory. Based on 
Kanninen's model which we used to obtain Equa- 
tion 10, ~7~= is estimated to be 

for the upper beam 

F 6E1E2(G/hl) 71/2 (12) 
(Ymaxl = L C ~  2 ..~ C2 E1 rl3j 

for the lower beam 

I 6EIEz(G/h2)~ 71/2 (13) 
(Smax2 ~ C2 E2/T]3 .q- C 2 gl J 

where q = hl/h2 and the subscripts 1 and 2 denote the 
upper and lower beam. The maximum stress, 
O'ma x i(i = 1 o r  2), cannot exceed the crazing stress or 
the stress needed to propogate an existing surface flaw. 
If o~1 and cyo2 are the smaller values of the crazing 
stress or the stress required to propagate a pre-existing 
flaw in the upper and the lower material, respectively, 
then the conditions O'maxl < O'cl and O'max2 < (Yc2 m u s t  

be satisfied in the upper and lower beam to prevent 
the substrate failure. From Equation 12, the max- 
imum toughness, G, limited by the upper beam 
"strength" is, 

2 hl(C2E2 + C2E, rl3)/(6E1E2) (14) Gmaxl = 0"cl 

and from Equation 13, the maximum G limited by the 
lower beam "strength" is 

(~e2 h2 Gmax 2 2 (C2E2/q a + C2E1)/(6E1E2) (15) 

The maximum Gc that can be measured using the 
ADCB cannot exceed the smaller one of Gmaxl and 
Gmax2 , otherwise beam fracture may occur. These 
equations show that one way of increasing the range 
of fracture toughness, G, that can be measured is to 
increase the beam thickness. For brittle materials, the 
maximum measurable G~ can be increased by increas- 
ing cy~ through surface treatment to reduce flaw size. 
Indeed Smith et al. [6] found in their experiment with 
PS/glass samples that higher interface fracture tough- 
ness can be measured by polishing the surface of the 
glass beam, 

5.3. Application of ADCB specimen in 
experiment 

The procedure for using an ADCB specimen is as 
follows. 

1. Measure the geometric quantities, i.e. the crack 
length, a, beam thicknesses, hi and h2, and the open- 
ing displacement, A, at the loading point (razor blade 
thickness). From these quantities as well as the mater- 
ial properties (El, E2, Vl, v2), calculate the critical 
energy release rate, Go, either by numerical methods 
(boundary element method or finite element method) 
or estimate it using Equation 10. 

2. Compute the phase angle, 4, corresponding to 
each Gc is step 1 by numerical methods or estimate it 
using the data given in Figs 4-12 in this paper. 

3. Plot 4 versus Go. This diagram represents the 
interface fracture toughness of the bimaterial system. 
(Clearly, the interface fracture toughness is also a func- 
tion of the interface bonding condition.) 

6. Conclusions 
We have computed G and 4a for the ADCB speci- 
mens. For short cracks and a mismatch of elastic 
properties that are not too severe, it is found that 
Equation 10, which is based on Kanninen's model, 
provides an accurate estimate of the energy release 
rate, G. o u r  numerical results show that this estimate 
is more accurate than the estimate based on the simple 
beam model, particularly for the cases of short cracks. 
The phase angle, 4d, for different specimen geometries 
and material properties is given graphically. The 
phase angle is found to lie between - 38 ~ and 35 ~ for 
d = 100 lam. For most polymer glass bimaterial sys- 
tems, where moduli differences are small, approximate 
steady state condition of the phase angle (constant) in 
the experiment with ADCB specimen is guaranteed 
for a/ht > 4. There is a maximum value of the inter- 
face toughness that can be measured using the ADCB 
(corresponding to fracture of one of the beams). But 
the maximum value may be increased by increasing 
the thickness dimension of both beams and keeping 
the thickness ratio constant without changing the 
phase angle, 4, significantly. 
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Appendix 
The boundary element method is the numerical tech- 
nique employed in this work. The advantage of this 
method is that it only discretizes the boundary of the 
elastic body. So if one is only interested in the dis- 
placements and tractions along the boundary (the 
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interface and Crack faces in our case), the BEM is 
a convenient and economical method. 

The bimaterial elastic body is divided into t w o  
domains, each of them is isotropic homogeneous. The 
integral equations are given separately in the two 
elastic domains as illustrated schematically i n Fig. AI. 
The continuity of the interracial displacements and 
tractions are used to couple the two sets of equations. 
The elements in the program are quadratic 
isoparametric elements. For the four elements at the 
crack tip, namely the elements composed of nodes a, b, 
c; a', b', c'; a, d, e; a', d', e', the middle nodes b, b', d, d' 
were placed at one-quarter the length of the elements 
from the crack tip as illustrated in Fig. A1, to capture 
the &/2 behaviour of the crack-opening displacement. 

The boundary condition for the problem is shown 
in Fig. A2.' The displacement a t  the point A is 0 in 
both.the vertical and horizontal directions. The verti- 
cal displacement between points B and C equals the 
razor blade thickness, A. 

The first method we used to compute G and ~d is 
the displacement method. From the elastic solution of 
the bimaterial interface crack problem, the crack 
opening displacement at distance, r, behind the crack 
tip is 

Auy + iAu~ = ](AHy) 2 -t- (Aux)2] 1/2 exp(iqb) (A1) 

qb = Arctan (Aux /Aur )  (A2) 

Using Equations A 1, 4 and 5, the relation between @a 
and qb is 

~d = d~ - e l n ( r / d )  + Arctan(2~) (A3) 

where d = 100 Ixm in our calculation. 

From Equation 4, one can easily express IKI in 
terms of Au~ and Auy 

Igl = 2 (2n) 1/2 cosh (he) {(1 + 4&) 

[ ( A u , )  2 + (Aux)Z]/(rC)} 1/2 (A4) 

Using Equations 6a and A4, G can be evaluated from 
Aux and Auy 

G = n /2  {(1 + 4 & ) [ ( A u , ) Z ( A u x ) e ] / ( r ) }  (A5) 

Using Equation A5, several G values are calculated 
from the values of Aux and Auy at different nodal 
points. 

A second method, the virtual crack closure method, 
was also used to calculate G from the nodal stresses 
and displacements near the crack tip [27]. In this 
method 

G = a T A b (A6) 

The vectors a and b are defined by a = C Au, b = Ca, 

where A and C are 6 • 6 matrices given below and the 
superscript T denotes the transpose of a vector. 

The opening displacements between nodes a and a', 
b and b', c and c' in Fig. A 1 are denoted by vector Au, 
which has six components 

A u  T : {/~Ua, A/I/b, Aue} , 

where AUa = {Au,x, Au,r,), Auax is the opening dis- 
placement in the x direction and Auar is the opening 
displacement in the y direction between nodes a and 
a'. The stresses at nodes a, d, e as in Fig. A1 are 
denoted by vector a T = {~a ,  ffd, fie } where ffa = (O'ax, 

(3"at}, flax and ~,y are the shear and normal stress 
cyxy and ffyy at node a. 

The matrices A and C are defined as 

\1\ \0\ \o\ 

- \ ; \  \ ~ \  \ 1 \ - -  

%,\\\\'~ B ~ Interface .~'~" \ \ \ \ \ \ \ \ \~\~\\\ \~\4\~," 

Figure A1 Configuration for BEM implementation in the crack-tip 
region. (a) The bimaterial crack-tip region. (b) The elastic body is 
divided into two subregions. The quadratic element boundaries are 
marked by the small vertical lines and the nodes are denoted by the 
small black dots. Nodes a and a' are at the crack tip. a, b, c are the 
nodes in the crack face in Material A. a, d, e are the nodes along the 
interface in Material A. ab = ac/4, and ad = ae/4. a', b', c' and a', d', 
c' are the corresponding nodes in Material B. The displacements in 
the interface nodes a and a', d and d', e and e', etc., are the same and 
the tractions at corresponding nodes have the same magnitude and 
opposite sign, respectively. 

where '  01 

E1 �9 v l  

E2 t v2 

Figure A2 Boundary condition for BEM calculation. The vertical and horizontal displacement at point A are fixed to be 0. The vertical 
displacement at point B is given as 0. The vertical displacement at point C is given as A. 
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For each specimen, the crack closure method gives 
one G value. This G value was compared with the 
G values from Equation A5 using the displacements 
corresponding to different pairs of nodal points be- 
hind the crack tip (Fig. A1). The G values obtained 
from both methods are very close to each other. In the 
ADCB specimen case, the G values using the opening 
displacement from nodes b and b' agree best with that 
obtained using the virtual crack closure metho& So in 
our calculations, the value of Aux and Auy from points 
b and b' are used to compute the phase angle, ~a, using 
Equations A1 and A3. 

The accuracy of our BEM program is checked by 
comparing its results with those of known closed-form 
solutions. Our BEM results agree well (to within 3%) 
with these solutions. We also compared our BEM 
results with the finite element method results of an 
interface crack problem solved by Charalambides 
et. al. [16]. For typical cases, our results differ by no 
more than 5%. Details of the numericalcalculation 
are given elsewhere [27]. 
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